翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Kelvin function : ウィキペディア英語版
Kelvin functions
In applied mathematics, the Kelvin functions ber''ν''(''x'') and bei''ν''(''x'') are the real and imaginary parts, respectively, of
:J_\nu \left (x e^} \right ),\,
where ''x'' is real, and , is the νth order Bessel function of the first kind. Similarly, the functions Kerν(''x'') and Keiν(''x'') are the real and imaginary parts, respectively, of
:K_\nu \left (x e^} \right ),\,
where is the νth order modified Bessel function of the second kind.
These functions are named after William Thomson, 1st Baron Kelvin.
While the Kelvin functions are defined as the real and imaginary parts of Bessel functions with ''x'' taken to be real, the functions can be analytically continued for complex arguments With the exception of Ber''n''(''x'') and Bei''n''(''x'') for integral ''n'', the Kelvin functions have a branch point at ''x'' = 0.
Below, is the Gamma function and is the Digamma function.
== ber(''x'') ==

For integers ''n'', ber''n''(''x'') has the series expansion
:\mathrm_n(x) = \left(\frac\right)^n \sum_ \frac" TITLE="\left(\frac">+ \frac\right)\pi\right )} \left(\frac\right)^k
where is the Gamma function. The special case ber0(''x''), commonly denoted as just ber(''x''), has the series expansion
:\mathrm(x) = 1 + \sum_ \frac \left(\frac \right )^
and asymptotic series
:\mathrm(x) \sim \frac}}}(x)},
where
:\alpha = \frac,
:f_1(x) = 1 + \sum_ \frac \prod_^k (2l - 1)^2
:g_1(x) = \sum_ \frac \prod_^k (2l - 1)^2

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Kelvin functions」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.